
W E B D E V E L O P E R

Power Automate for Excel: How to understand the Power

Fx programming language

Microsoft’s Power Platform offers Excel users an accessible and

powerful gateway to build workflows, websites, and even applications

within a low/no-code environment that seamlessly integrates with

numerous data sources, including Excel itself.

In this post, we’ll explore how to use a premade template in Power

Automate to create a basic clock-in/clock-out tool that logs data directly

into Excel. Utilizing the Power Fx programming language, we’ll

demonstrate how to retrieve data from previous steps and format the

outputs effectively. To get started, open a blank Excel workbook and

ensure it’s saved to the same OneDrive or SharePoint account

associated with your Power Automate license.

W E B D E V E L O P E R

For this workflow, we’ll be recording start and stop times directly into an

Excel table of our choice. Before setting up this flow, it’s crucial to establish

the name and location of this table. Start by creating a blank table similar to

the one below. Your table should include one column for the time of clocking

in or out and another column to indicate whether it’s a start or stop work

event:

Next, navigate to this Power Automate template which enables you to log

working hours in Excel with just the push of a button:

https://make.powerautomate.com/environments/Default-9156fa70-f64b-4017-bd91-bad3cd147457/galleries/public/templates/4f1f61b82e874396a6a078b1feebefb3/track-your-working-hours-in-excel-online-business-spreadsheet

W E B D E V E L O P E R

Click “Continue,” and you’ll see the flow diagram. Let’s start by

setting up the flow trigger. This trigger will determine what

happens when a user clicks on this flow—specifically, whether

the user is clocking in or out. To do this, click on “Manually

Trigger a Flow,” then select “Add an Input.”

W E B D E V E L O P E R

Next, select the type of user input to be collected when the

flow is triggered. We’ll choose the Yes/No option, which we can

customize to log a Stop/Start state.

W E B D E V E L O P E R

Go ahead and name this input “Start/Stop” and provide a brief

description.

Awesome work! Next, we need to set up the next step in the flow,

which involves choosing the table and file where this new row will be

added. Click on the Excel card in the Power Automate workflow. First,

specify the location and name of your workbook and table as shown

below:

W E B D E V E L O P E R

Next, let’s specify which columns to populate in this step of the flow.

For our purposes of adding rows to the Excel table, we only need the

Time and Start_Stop columns. Go to Advanced Parameters and

deselect the other columns so that only these two are visible.

Next, let’s define how to distribute the data collected in the previous

step across the table columns. Click on the lightning bolt icon next to

each field’s text box to set this up. Assign a timestamp, which Power

Automate collects automatically, to the Time column. For the

Start_Stop column, link it to the outcomes of the earlier established

trigger. If these options aren’t visible, you might need to select “Show

more options” in the dropdown menu to find them.

W E B D E V E L O P E R

After configuring the flow to save to the correct location with the

appropriate fields, navigate to the home area and remember to save

the flow. This ensures that you can also test it from the home screen.

Great! When you’re ready to test this flow in Power Automate, confirm

that it’s set to manually trigger. Then, specify whether this is a start or

a stop time—I’ll keep this toggled off to indicate it’s a start time.

W E B D E V E L O P E R

Go ahead and run the flow. You should receive a success message

shortly. Once it completes, if you open the workbook, you’ll see the

results displayed like this!

There are a couple of aesthetic issues we need to address here. First,

there’s that initial blank row; we can easily remove that. Remember,

we included a placeholder in the body data cell as a part of the table to

build upon.

A more significant concern is the formatting of our fetched time data.

The Time column is difficult to read and doesn’t resemble the familiar

date format Excel users typically handle. We need this to be more

legible. Additionally, I’d like our start and stop times to be labeled

clearly, rather than as true and false.

W E B D E V E L O P E R

To rectify this, we can’t simply use the output that Power Automate

provides. We’ll need to modify it, and we’ll do so using Power Fx. Head

back to your flow and choose to edit it. Go to your second step and

let’s revise these parameters—clear the current settings for Time and

Start_Stop as we’re going to fix them.

This time, instead of directly using an input from earlier, we’ll insert

our own expression. Go ahead and click the Fx icon to proceed.

W E B D E V E L O P E R

From this point, we can leverage IntelliSense to assist with coding.

Simply start typing, and IntelliSense will suggest completions—just hit

Tab to accept a suggestion. Of course, you’ll need some knowledge of

Power Fx to know which function to use. A quick online search reveals

that formatDateTime() is suitable for formatting time data in Power Fx.

To use the original timestamp as an input for this function, navigate to

the Dynamic Content tab under the code editor and select the

appropriate parameter.

W E B D E V E L O P E R

Perfect! Ensure your function matches the example below to format

this into a more recognizable timestamp in Excel. Then, click “Add” to

incorporate it into your flow.

formatDateTime(triggerOutputs()?['headers']?['x-ms-user-

timestamp'], 'yyyy-MM-dd hh:mm:ss tt')

We’ll apply a similar approach for the Start_Stop column, using an if

statement to convert the TRUE/FALSE states to “Start” and “Stop,”

respectively.

if(triggerBody()?['boolean'], 'Stop', 'Start')

W E B D E V E L O P E R

Your parameters for this section of the flow should now be set up as

follows:

Go ahead and run your flow, and it should look much improved this

time! Now the date and time are clearly readable. It’s displayed in

military time, which may be confusing for some, but I appreciate the

precision and will keep it. However, the timezone seems off for me—

it’s a few hours ahead.

W E B D E V E L O P E R

To correct this, we’ll need to adjust the expression in Power Automate.

I’ll modify it to take the current time and convert it to my timezone,

Eastern Standard Time. You’ll notice that I’m using the

convertFromUtc() function nested inside formatDateTime() in Power

Fx, similar to how functions can be nested in Excel.

formatDateTime(convertFromUtc(utcNow(), 'Eastern Standard

Time'), 'dd MMM yyyy HH:mm')

Now, go ahead and rerun this flow, and you should see that the

timezone has been adjusted to Eastern Time. Feel free to modify this

to match the timezone you operate from!

W E B D E V E L O P E R

Running this flow directly from Power Automate works well, but there’s

an easier way, especially for those who don’t frequently use Power

Automate. You can start the flow directly from the Excel workbook

where your data is stored. Here’s how: open your workbook and go to

the Automate tab on the ribbon. Here, you’ll see the flow listed under

“Flows in this workbook.” Just click the three dots next to the flow to

run it. You’ll even have access to the start/stop toggle.

W E B D E V E L O P E R

I hope this post provided a useful introduction to how the

Power Fx programming language can be utilized to tailor the

results of Power Automate flows for better integration with

Excel workbooks. Do you have any questions about Power Fx,

Power Automate, or the broader Power Platform as it pertains

to Excel? Let me know.

Resources

“30 Days of Low Code,” Microsoft Open Source

“Microsoft Power Fx Overview,” Microsoft Learn

THANK YOU

https://microsoft.github.io/Low-Code/lowcode-february/30Days/
https://learn.microsoft.com/en-us/power-platform/power-fx/overview

