
W E B  D E V E L O P E R

Python in Excel: How to create interactive visualizations

One of the greatest wins for Excel users learning Python is access to a

comprehensive suite of data visualization tools. However, compared to

Excel, the default plots produced with Python in Excel can seem

somewhat static. For example, there’s no straightforward way to add

tooltips or interactive elements that allow users to click on parts of the

chart to understand the data’s origins.

Nonetheless, it is possible to make Python plots created in Excel feel

more interactive and user-friendly. This post expands on a previous

article where I explored using moving averages with Python in Excel.

We’ll extend this concept further to develop an interactive plot. You can

follow along using the exercise file provided below:

D O W N L O A D  T H E  E X E R C I S E  F I L E  H E R E

https://github.com/summerofgeorge/blog-files/raw/master/python-in-excel-interactive-viz-demo.xlsx


W E B  D E V E L O P E R

The first step I will take is to incorporate several user inputs that will guide

the remainder of the model. Specifically, I will allow the user to determine

the sampling interval for the data and the number of periods to use for the

moving average:

In an Excel model that requires user-defined inputs, it is a good idea to

incorporate data validation controls to enhance usability and robustness.

Specifically, I will include a dropdown menu to designate permissible interval

periods within the model (“Daily,” “Monthly,” etc.). Accurate spelling of these

intervals is essential, as it will dictate the subsequent operations of the

model.



W E B  D E V E L O P E R

Therefore, I will create a lookup table that serves two purposes: it will identify

the corresponding pandas date offset values required for Python integration,

and establish a foundation of accuracy for the data validation. This approach

ensures both precision and ease of use, streamlining the model’s

functionality.

In a new worksheet, go ahead and list out the three options we are going to

let the user choose between: Daily, Weekly and Monthly. Then in the next

column, add the proper pandas date offset frequency string. In pandas, a

date offset frequency string specifies the increment at which to apply a

frequency conversion or generate a date range. These strings represent base

time frequencies, such as “D” for day, “M” for month, and “W” for minute,

with additional modifiers (like “S” for start or “E” for end) to indicate specific

points within the given period.

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html


W E B  D E V E L O P E R

Your table should look like this. Name it period_offsets:

Now that we’ve established our “source of truth,” we’d like to use the period

column as the basis for the data validation dropdown. This involves the

slightly roundabout step of creating a named range from the Period table

and using it as the foundation for the data validation dropdown. For more

information, check out this post from MyOnlineTrainingHub.

https://www.myonlinetraininghub.com/excel-tables-as-source-for-data-validation-lists


W E B  D E V E L O P E R

After you have created the named range periods, select cell E2 in your

main worksheet. Then, go to the ribbon, click on “Data,” and choose “Data

Validation” to apply a dropdown list based on this range to your cell.

Excellent. We only need to define one more input, which will be offstage

as it derives from the user’s selection. I plan to use the XLOOKUP()

function to identify the selected date offset frequency string. This will

then be passed into Python to dictate the resampling of the time series

data.



W E B  D E V E L O P E R

Great job! We now have all the data and user-defined inputs necessary to

create this chart. Let’s proceed by adding a Python cell that will load both

the main dataset and the user-defined inputs as named objects:



W E B  D E V E L O P E R

Next, we will resample the dataset based on whichever interval the user

requested.

First, resampling in pandas requires the date column to be set as the

index of the DataFrame, so I’ll do that using set_index().

Then, I will use the resample() method to calculate total sales over the

specified interval. Remember, this is the value found in the period_offset

variable, so we will pass that into resample() to obtain the desired

resampling. I will then chain the sum() method to get the total sales for

the specified period. If you want to further validate and experiment with

this code, you can preview or display the resulting Excel values in the

downloaded exercise file.



W E B  D E V E L O P E R

The next step is to construct the plot, which only requires a few lines of

code. I will plot the actual, “unsmoothed” resampled data, then add the

smoothed sales data.

The trickier, more dynamic aspect here is the title of the plot. I would like

it to dynamically be relabeled based on the period that is being

resampled and the number of periods being used to smooth. I will use f-

strings from Python to make this happen.

S N S . L I N E P L O T ( D A T A = S A L E S _ D F _ R E S A M P L E D ,
X = ' D A T E ' ,  Y = ' S A L E S ' ,  L A B E L = ' S A L E S ' )

S N S . L I N E P L O T ( D A T A = S A L E S _ D F _ R E S A M P L E D ,
X = ' D A T E ' ,  Y = ' S A L E S  S M O O T H E D ' ,
L A B E L = ' S A L E S  ( S M O O T H E D ) ' )

P L T . T I T L E ( F " { I N T E R V A L }  S A L E S  V S
{ N _ P E R I O D S } - P E R I O D  M O V I N G  A V E R A G E " )

https://www.geeksforgeeks.org/formatted-string-literals-f-strings-python/
https://www.geeksforgeeks.org/formatted-string-literals-f-strings-python/


W E B  D E V E L O P E R

Go ahead and display and resize the Python plot in Excel, and you should

see something like the following. The user now controls both the

sampling interval and the number of smoothing periods, and the plot

updates accordingly.

While the resulting plot still doesn’t have tooltips or the ability to click into

the data to understand its series, the ability to work smoothly with time

series data and easily customize the plot makes this a very worthwhile

skill to have in your toolkit.



W E B  D E V E L O P E R

Thanks for checking out this post on building interactive data

visualizations with Python in Excel!

Do you have any questions? Let me know in the comments. And

if you’re interested in getting started with Python as an Excel

user, check out my book, Advancing into Analytics: From Excel to

Python and R.

THANK YOU

https://stringfestanalytics.com/book/
https://stringfestanalytics.com/book/
https://stringfestanalytics.com/book/

