

Five things

Excel users

should know

about Python

2

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

Contents:

0. Getting Started ___ 2

 _____________________________________ 2

1. Open source means a license to build and distribute __________________ 3

2. There’s a package for that! _______________________________________ 5

The Python Standard Library _______________________________ 5

Installing packages from Anaconda and PyPI _____________________ 5

3. It’s finnicky!__ 6

It’s case sensitive ______________________________________ 7

Functions ___ 7

Objects ___ 7

You need to import packages to use them _______________________ 8

It counts from 0 _______________________________________ 9

It requires indentation __________________________________ 11

Finnicky, or just logical? _________________________________ 12

4. It can augment and automate Excel _______________________________ 12

5. It’s not worth panicking over _____________________________________ 13

Conclusion and next steps __ 13

Thank you ___ 14

0. Getting Started

Thank you for picking up this white paper. I hope that as an Excel user this paper both

demystifies what Python can do for you and excites you to learn more.

All files used in this white paper are available at the GitHub repository. To follow along

interactively, click the “launch binder” icon on the homepage of the repository:

https://github.com/stringfestdata/five-things-excel-python

3

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

. This will launch a session of Python on the cloud; no downloads required. In

the next section, I’ll also offer steps for downloading Python to your computer.

If, during any point of this white paper, you feel overwhelmed and that Python is too difficult

for you, keep section 5 in mind: don’t panic! You’ll be in great shape for future learning by the

end of this white paper, and I’ll provide some additional resources in the conclusion.

Let’s prance into Python!

1. Open source means a license to build and distribute

What is open source software? Yes, it’s free – that’s a nice touch and it significantly lowers the

bar to entry. More broadly, however, open source software means that anyone is free to use,

purpose, modify and redistribute it.

This will become apparent for Python in a couple of ways: first, untold thousands of

contributors develop and share packages based on the source code. You’ll learn more about

packages in section 2.

Second, because Python is open source, anyone is free to redistribute it. The “official” Python

code base is available from the Python Foundation at python.org.

While you could download it from there, it’s common especially in the data community instead

to do so from Anaconda. Essentially, this for-profit

company redistributes the Python code with various

features and services included; hence, you’ll often

hear it referred to as the Anaconda “distribution” of

Python. You can download the free Individual Edition

on Anaconda’s website.

To use Excel, you open a single application that contains the code base along with an end-user

interface. In Python, these are decoupled so that you can run the code base from a variety of

applications. We’ll focus on a very common interface for working with Python: the Jupyter

Notebook.

According to its parent organization Project Jupyter, the Jupyter Notebook is “an open-source

web application that allows you to create and share documents that contain live code,

equations, visualizations and narrative text.”

When you click the icon of this paper’s companion repo, you will see Jupyter’s

file explorer. Click on five-things-excel-python-demo.ipynb to follow along with this

white paper.

https://www.python.org/
https://www.anaconda.com/products/individual
https://jupyter.org/
https://github.com/stringfestdata/five-things-excel-python

4

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

.ipynb is the extension for Jupyter Notebooks and stands for IPython Notebook. Jupyter was

conceived as an interactive way (hence the I) to execute Python code, although it’s now

expanded to work with many other languages such as R, SAS and JavaScript.

Jupyter notebooks consist of a series of cells which can contain, for the most part, either

Markdown text or (in this case) Python code. You can run the cells in our demo notebook by

clicking “Run” on the toolbar. (And yes, there is a keyboard shortcut to run cells, along with

many other commands – go to Help > Keyboard Shortcuts to find it out.)

To learn a bit more about operating in Jupyter notebooks, such as how to rename files and add

text blocks, check out this blog post. You will quickly see why Jupyter has become such a

popular interface for building beautiful, interactive data documents.

In this section you learned about what it means for Python to be open source. The next section

will dig further into one feature: packages.

https://stringfestanalytics.com/tour-python-jupyter/

5

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

2. There’s a package for that!

Imagine if you weren’t able to download applications on

your smartphone. You could make phone calls, browse

the internet, and jot notes to yourself—still pretty

handy. But the real power of a smartphone comes from

its applications, or apps.

As an open source language, many thousands of

contributors have built and shared Python packages

which serve much like apps for smartphones. Packages

are built to assist with everything from web

development to artificial intelligence.

The Python Package Index (PyPI) serves as the official

storehouse for these packages. How can you get your

hands on them?

The Python Standard Library

Actually, before getting into these packages, let’s take a moment to learn about the Standard

Library. As the name suggests, these packages come with any download of Python. Learn more

about the Standard Library here. While the Standard Library has some useful stuff, you’ll likely

need to branch further out to get far with data analysis or visualization.

Installing packages from Anaconda and PyPI

Many popular Python packages outside the Standard Library which are stored on PyPI come

pre-installed with Anaconda; this is another “distribution” of code. You can check what’s

included for your version here. For example, pandas is available out of the box for most

Anaconda downloads. We’ll talk more about pandas later on in this paper.

Other packages do not come pre-installed by Anaconda, but can be downloaded from there.

This can be done with the command conda install packagename. As a command line

execution, it can be run in Jupyter with an exclamation mark.

For this example, we’ll install plotly, a popular Python visualization language:

https://docs.python.org/3/library/
https://docs.anaconda.com/anaconda/packages/pkg-docs/

6

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

If you’re following along with the demo file, you’ll see that not much happens when you run

this block. That’s because it’s been commented out, as indicated by the hash mark #. In other

words, this bit of code has not been executed in Python. Because installing a package can take

some time and is only meant to be done once, it’s considered bad etiquette to leave it as code.

Comments are also used to write notes providing context, assumptions and so forth.

If you’re looking to download a package that’s not distributed by Anaconda, you can download

it easily enough directly from PyPI. The command line execution here will be pip install

packagename. For example, let’s install the pyxlsb package, which can be used to work with

.xlsb Excel workbooks (currently commented out):

Check out this post for a complete decision tree on sourcing Python packages from Anaconda

versus directly from PyPI.

OK, enough about how to get packages – what packages should you know about? You won’t get

far in data analysis and visualization without those in the following table, all of which come pre-

installed with Anaconda:

Package Description
numpy Designed for numerical computing
pandas Designed to work with panel data and other tabular

data structures (think rows and columns). This package
leverages code from numpy.

matplotlib a popular package for data visualization
seaborn another package for data visualization, built on top of

matplotlib and designed to work well with pandas.

However, as you will see in the next section, having a package installed isn’t enough to use it –

you’ll need to import it too.

3. It’s finnicky!

Python is a programming language, and every language has its features that take some getting

used to. Fortunately there are sound reasons behind these features, and you will come to

respect them. But coming from Excel, these in particular may feel jarring:

https://pypi.org/project/pip/
https://stringfestanalytics.com/?p=7680

7

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

It’s case sensitive

To learn more about case sensitivity, let’s take a look at functions and objects:

Functions

Some Python look quite similar to Excel. For example, we can calculate the absolute value using

the abs() function like so:

However, Abs() or ABS() don’t work:

This is because Python is case sensitive. In Excel, you can type ABS() in any case and get the

absolute value. Not so Python.

Objects

Another, perhaps even more important example is objects. Rather than simply run functions in

Python, you’ll typically assign most data to objects and work from there, such as running

functions on them. Objects are assigned with the equals operator, =.

For example, rather than taking the absolute value of -10 directly, we could assign -10 as an

object a and then take the absolute value of a:

8

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

What happens if we take the absolute value of the object A? We get an error, again because

Python is case sensitive.

To learn more about functions and objects, check out the resources in the conclusion of this

paper.

You need to import packages to use them

Excel features lots of functions right out of the box to help you work with data. So does Python,

but most of them reside in outside packages. For example, a Python function sqrt() does

exist to find the square root, similar to Excel.

But try it, and you’ll get an error:

How come? Effectively, Python can’t identify the code that defines sqrt() as a function. It

turns out this code resides in one of the packages, or modules, of the Standard Library, math.

(While technically a package is a way to organize modules, you’ll often hear these terms used

interchangeably.)

While math has already been downloaded as part of the Standard Library, you still need to

import it into your session to use it – just like you’d need to open an app to use it on your

phone even though you’ve already downloaded it.

9

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

The import statement is used to do this. Let’s call in math and try the square root function

again:

Turns out that just calling math into our session wasn’t enough. We need to point to it each

time we want to use it. We’ll do that by prefixing the function with math:

It counts from 0

So far we’ve been working with single pieces of data in Python, such as taking the square root

of one number. This is similar to working with one cell in Excel.

But what about working with a larger range of cells? This can be done in Python using one of its

many collection data types, such as a list.

Here we’ll create a list of five elements; each of them happen to be string or character data, but

this doesn’t have to be the case. We’ll place our comma-separated entries inside square

brackets to define it as a list, named leaders.

Assigning data to an object is like putting some information into a shoebox. To see what’s inside

the shoebox, you can print the object. This can be done in Jupyter simply by running the

object’s name:

10

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

If you’d like to learn more about working with lists and other data types in Python, check out

the resources in the conclusion. For now, imagine that this is for all intents and purposes a

named range in Excel. If this were a named range, we could access its third element with the

INDEX() function:

Indexing is also a very common procedure in Python, but it works a little differently than in

Excel.

To orient you to this new way, imagine that you were so excited to get your hands on a file like

this that you click download several times in haste. Doing so leaves you with a set of files like

such:

In this example, our second dataset is dataset (1).xlsx, our third is dataset (2).xlsx, and so forth.

In a way, we could say the first file is dataset (0).xlsx, although it’s not stated as such. In other

words, we are counting from zero here to index these files. Python counts this way all the time,

and it’s known more formally as zero-based indexing.

We can index a Python list by placing the desired position number in square brackets next to

the list name. Think for a moment about what leaders[3] will return, then run it:

https://github.com/stringfestdata/training-assets/raw/master/dataset.xlsx
https://github.com/stringfestdata/training-assets/raw/master/dataset.xlsx

11

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

While it seems like this would be the equivalent of Excel’s =INDEX(leaders, 3), this actually

pulls the fourth element of the list, not the third. That’s zero-based indexing for you! To learn

more, check out this blog post.

It requires indentation

Disoriented yet? Here’s one more curveball.

Ever heard how sometimes it’s not what you say that matters, but what you don’t say? Python

lives by this sentiment: not just code, but white space, can determine how code is run!

Particularly, indentation tells Python what parts of code belong together and should be

executed as such.

For an example, let’s look at a loop. You may be familiar with loops if you’ve coded in VBA. No

worries if not; just focus on the stated code error and resolution.

In this example we’re assigning a list languages. We then want to iterate through each

element of the list and make them lowercase. While in a loop, we’ll need to explicitly use the

print() function to print each element’s result:

One thing to appreciate about Python is that error messages are generally intelligible. In this

case, we’re told explicitly here that indentation was expected at print().

https://stringfestanalytics.com/seen-zero-based-indexing/

12

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

Let’s fix that and try again:

Bingo! Indentation can be done using either tabs or spaces, although most programmers prefer

spaces.

Finnicky, or just logical?

At first, these features may feel like annoying quirks. But over time, you’ll come to appreciate

the logical consistency of Python these deliver. Regardless of the packages you’re using or

problems you’re trying to solve, principles like zero-based indexing and case sensitivity set

consistent rules of Python and paradoxically make debugging that much easier.

4. It can augment and automate Excel

In section 2 you learned about some common Python packages for general data analysis. Here

we’ll look at some packages built specifically for working with Excel.

Whether it’s importing or exporting spreadsheet data, calling VBA procedures from Python, or

creating user-defined functions in Excel using Python features, these packages work to both

augment and automate Excel’s capabilities.

The following table lists some standard Excel <> Python packages along with some basic pros

and cons:

13

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

Package Pros Cons
xlsxwriter Write almost anything from

Excel from Python (data,
formats, workbook settings,
etc.)

Writes to Excel only/no
reading

xlwings Feature-rich: write
data/UDFs, call VBA
procedures, robust
debugging tools

Local Python/Excel
downloads needed

openpyxl Read and write .xlsx, .xlsm
Excel files

Limited ability to edit files

pyxlsb Read and write .xlsb files Limited features
xlrd, xlwt, xlutils Can work with .xls files Limited features

In keeping with what you learned in section 2, some of these packages come with Anaconda,

some can be downloaded from there, and yet others are available from PyPI.

It can take some practice to see how all the pieces of a Python <> Excel workflow fit together.

For example, it’s not uncommon to pair these Excel-specific packages with ones like pandas

and seaborn to build rich data analyses and visualizations in Python, then make them available

in Excel. To see what a basic Python <> Excel workflow might look like, check out this blog post.

5. It’s not worth panicking over

Python is a language -- of the programming variety -- and just like with any language there is

always more to learn and consume. It can be distressing and overwhelming.

Don’t panic! No one knows everything about Python, and you should never be embarrassed

about not knowing the answer to something. You should, however, always have a game plan

to get unblocked.

There are plenty of good resources, but it’s easy to aim driftlessly across the web if you’re not

consistent in your Python troubleshooting workflow. Check out this post on five ways to

consistently look for help in Python. While using forums like Reddit or StackOverflow are a valid

way to get help, you’ll need to do some homework first; the post covers these steps.

Conclusion and next steps

Congrats for reading to the end. With these five tips at your disposal, you’re well on your way

to becoming a true Excel-Pythonista.

https://stringfestanalytics.com/?p=7731
https://stringfestanalytics.com/five-ways-to-get-help-in-python/?_thumbnail_id=7440

14

FIVE THINGS EXCEL USERS SHOULD KNOW ABOUT PYTHON

But just like anything worth pursuing, there’s always more to learn. Here are a few resources

for you:

• Subscribe to python-bloggers.com. This is a daily

roundup of Python posts from across the web,

particularly for data users.

• Read Advancing into Analytics: From Excel to Python and R by George

Mount (sigh… yes, that guy.). You will learn more about Jupyter notebooks, how

to manipulate and visualize data, and conduct hypothesis testing.

• Read Python for Excel: A Modern Environment for Automation and Data

Analysis by Felix Zumstein. Here, you will learn more intermediate Python

programming techniques and how to fully automate Excel.

Thank you

Thanks for picking up this white paper as a guide for including Python along with Excel in your

data toolkit.

I invite you to continue reading my newsletter and perusing my blog for more analytics content.

You’re also welcome to get in touch if I can help your organization with the services listed here.

One last thing: please give me a follow on Twitter and LinkedIn. Your support is appreciated!

https://python-bloggers.com/
http://stringfestanalytics.com/book/
https://www.xlwings.org/book
https://www.xlwings.org/book
https://stringfestanalytics.com/blog/
https://stringfestanalytics.com/consulting/
https://twitter.com/gjmount
https://www.linkedin.com/in/gjmount/

